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Future human spaceflight missions will place crews at large distances and light-time delays from Earth, requiring
novel capabilities for crews with limited ground support toÂ manage spacecraft, habitats, and supporting equipment
to prevent Loss of Mission (LOM) or Loss of Crew (LOC) over extended duration missions. In particular,
theseÂ capabilities are needed to handle faults leading to loss of critical function or unexpected expenditure of
consumables. Expanded flight control functionality will be on-boardÂ spacecraft with significant automation,
autonomy, and decision support software. The increasingly complex interconnectivity of these elements introduces
new vulnerabilities within space systems that are sometimes impossible to predict.Â  In that context, one key
property of the respective system is its resilienceÂ to unforeseen events.

Resilience, as defined by the U.S. National Academy of Sciences [1] (NAS), is the ability to plan and prepare for,
absorb, recover from, and more successfully adapt to adverse events.Â  This definition encompasses principles
such as robustness, redundancy, modularity, and adaptability.

To enable resilient behavior of a system (such as a vehicle, a habitat, a rover, etc.), "resilience" needs to be built-in
during the design phase of the system development. To thatÂ end, the operational states of a
systemâ&#128;&#153;s component need to be considered in conjunction with the intended function of the
component and its possible failure modes throughoutÂ the vehicle's life cycle. Where possible, critical failures are
eliminated during the design stage. For failure modes that cannot be eliminated, a mechanism needs to be devised
that considers howÂ to have optimal state awareness during operations and to mitigate the fault. Mitigation can be
accomplished through fault avoidance, fault masking, or Fault Detection, Identification, andÂ Recovery (FDIR). For
the latter, system reconfiguration leveraging functional redundancies is of particular interest. Since a vehicle is
made up of many components, a system-of-systemâ&#128;&#153;s approach needsÂ to be considered in a multi-
objective optimization context to account for interdependencies and to realize possible mutually beneficial
mitigation solutions for resiliency.

Proposals to this subtopic should specify innovation and approaches toward two goals:

Development of methods and tools that allow the assessment and optimization of system resilience during
its conceptual design stage, while simultaneously maximizing reliability and safety.
Development of measures and metrics that quantify the degree of resilience of a system with respect to a
mission ConOps and hazard analysis.

Resilience measures and metrics must be general enough to support broad applications, yet precise enough to
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measure system-specific qualities. Such metrics are necessary to make resource and operations decisions. Risk
metrics tend to assess risks to individualcomponents, ignoring system functionality as the result of interacting
components. Resilience measures and metrics also ideally need to account for uncertainty in the planned operation
of the system, and focus on integrating statistical methods for uncertainty propagation into resilience-based design.
Rather than the static view of systems and networks in risk assessment, resilience adopts a dynamic view. This
means resilience metrics must also consider the ability of a system to plan, prepare, and adapt as adverse events
occur, rather than focus entirely on threat prevention and mitigation. Finally, resilience depends upon specific
qualities that risk assessment cannot quantify, such as system flexibility and interconnectedness.

Proposed solutions are expected to have characteristics including, but not limited to:

Life-cycle models that encapsulate cost/benefit of envisioned design solution and that can be used to inform
about the resilience of the system.

Models may need to be built at the appropriate fidelity level to capture relevant fault behavior.
Models may need to assess behavior and consequences during degraded (or faulted) state.
Models should also be able to assess mitigation actions that are part of an integrated health
management approach.

Design optimization methodology that can systematically incorporate health management solutions.
Methods that integrate optimal decision-making into the design concept.
Methods that make use of both system health models and observations to provide the best decision
given the information available.
Methodology to allows bi-directional exchange between a model and the analysis tool.
Methods that systemically include desired levels of resilience in the design optimization process.

Desired, but not necessary:

Uncertainty management:
Identify the various sources of uncertainty that affect system performance, and quantify their
combined effect on both system failure and resilience.
Systematically incorporate uncertainty in the design process, thereby incorporating both resilience
and likelihood of failure directly during the design stage.

This SBIR work aims to generate a practical toolkit for space systems that can deliver solutions with assured levels
of performance, reliability and resilience. Emphasis is on the design for resilience methodology, not on delivering
entire systems.

Metrics for success include:

Development of generic quantitative measures and metrics that evaluate system resilience, and their
application to space relevant systems or subsystems.
Demonstrated improvement of resilience over baseline design for at least two different space relevant
systems or subsystems (In-space applications are preferred, but terrestrial analogues will be considered).
Consideration of at least 3 different fault modes.
Software tools must be able to accept other systems or subsystems through appropriate interface.

SBIR work is expected to deliver mainly software in the form of tools used during the design stage and also
prototype software that would manageÂ resiliency during autonomous operations. For the latter, the SBIR effort
should analyze sensors, computational hardware, and software stack.

Proposals must demonstrate mission operations risk reduction through appropriate metrics.

Deliverables: tools developed, algorithms and any data generated in simulations or experiments.

Below are a few links to documents on resilience that may be useful to understand the context:
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Resilience Engineering and Quantification for Sustainable Systems Development and Assessment: Socio-
technical Systems and Critical Infrastructure - https://www.irgc.org/wp-content/uploads/2016/04/Haering-et-
al.-Resilience-Engineering-and-Quantification.pdf.
The New Resilience Paradigm - Essential Strategies for a Changing Risk Landscape - 
https://www.irgc.org/wp-content/uploads/2016/04/Fiksel-The-New-Resilience-Paradigm.pdf.
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